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High-dimensional Vectorized Embeddings

Core element of the vast majority of machine learning tasks.
Facilites learning, understanding concepts, and efficiently
representing feature spaces.

Image Credit: https://newsroom.ucla.edu/releases/first-ever-3d-atomic-imaging-amorphous-solid/
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What are Embeddings?

Mapped vector representations of data entities in
high-dimension.

Image Credit: https://www.leewayhertz.com/embeddings-as-a-service/
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Embedding Mechanism

Self-supervised learning approach
Effectively convey the meaning and structural relationships
present in the input data.

Image Credit: The Rise of Vector Data - https://www.pinecone.io/learn/rise-vector-data/
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Challenges in High-dimension

Difficult to think about or conceptualize the structure of
embeddings in high-dimension.

This makes analyzing and obtaining meaningful patterns
within the embeddings difficult.
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Inherent Challenges Associated with Embeddings
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Way Forward: Geometric Approaches

Despite these challenges, there are existing geometric
techniques that can be used to gain insights and extract
meaningful information from high-dimensional embeddings:

⋆ Defining a basis
⋆ Spectral structure through Eigen-Decomposition
⋆ Normalization

These techniques permit us to consider the geometry of these
vectorized high-dimensional embeddings more appropriately.
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Way Forward: Geometric Approaches

Consequently, understanding the underlying geometrical
structure of the high-dimensional vectorized embedding is of
great interest.

This motivates the central theme of my dissertation.
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Central Theme
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Central Theme: Publications

1 [ICLR, 2022] P. O. Aboagye, J. Phillips, Y. Zheng, J. Wang, C.-C. M.
Yeh, W. Zhang, L. Wang, and H. Yang, Normalization of language
embeddings for cross-lingual alignment, in International Conference on
Learning Representations, 2022.

2 [AMTA, 2022] P. O. Aboagye, Y. Zheng, M. Yeh, J. Wang, Z. Zhuang,
H. Chen, L. Wang, W. Zhang, and J. Phillips, Quantized Wasserstein
Procrustes alignment of word embedding spaces, in Proceedings of the
15th biennial conference of the Association for Machine Translation in the
Americas, 2022.

3 [ICLR, 2023] P. O. Aboagye, Y. Zheng, J. Shunn, C.-C. M. Yeh, J.
Wang, Z. Zhuang, H. Chen, L. Wang, W. Zhang, and J. M. Phillips,
Interpretable debiasing of vectorized language representations with
iterative orthogonalization, in International Conference on Learning
Representations (ICLR), 2023.

4 [Under Review] P. O. Aboagye, H. Pourmahmoodaghababa, Y. Zheng,
C.-C. M. Yeh, J. Wang, H. Chen, L. W. Xin Dai, W. Zhang, and J.
Phillips, One-hot encoding strikes back: Fully orthogonal
coordinate-aligned class representations.
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[ICLR, 2023]   P. O. Aboagye, Y. Zheng, J. Shunn, C.-C. M. Yeh, J. Wang, Z. Zhuang, H. Chen, L. Wang,
W. Zhang, and J. M. Phillips, Interpretable debiasing of vectorized language representations

with iterative orthogonalization, in International Conference on Learning Representations
(ICLR), 2023.
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AI Safety
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Word Embeddings
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Bias in Language Representation

Image Credit: Dev, et al., 2021, “OSCaR: Orthogonal Subspace Correction and Rectification of Biases in Word
Embeddings”
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Bias Amplification in ChatGPT

Source: https://textio.com/blog/chatgpt-writes-job-posts/99089591200

Source: https://www.fastcompany.com/90844066/chatgpt-write-performance-reviews-sexist-and-racist Source: https://mobile.twitter.com/dk_munro/status/1631761802500423680
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Debiasing Representations by Post Processing

Concept Subspaces Identification

Debiasing and Disentangling of Subspaces
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Concept Subspaces Identification: Two Means
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Debiasing and Disentanglement of Subspaces

Linear Projection, LP (Dev & Phillips, 2019)
Hard Debiasing, HD (Bolukbasi et al., 2016)
Iterative Null Space Projection, INLP (Ravfogel et al., 2020)
OSCaR (Dev et al., 2021)
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OSCaR
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Our Proposed Method

In this work, we propose a new mechanism to augment a word
vector embedding representation that offers:

⋆ improved bias removal while retaining the concept information
⋆ resulting in the interpretability of the representation.

We build on top of Orthogonal Subspace Correction and
Rectification (OSCaR)
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Significant modifications to OSCaR

Centering
Rectification
Uncentering
Iteration

We call our approach Iterative Subspace Rectification (ISR)
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Point of Rotation in OSCaR
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Centering in ISR
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Example of Centering in ISR



Introduction Background Our Proposed Method Results Conclusion Future Work

Example of Centering in ISR
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Rectification/Orthogonalization in ISR

Image Credit: Dev, et al., 2021, “OSCaR: Orthogonal Subspace Correction and Rectification of Biases in Word
Embeddings”
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Graded Rotation for Two Concept Subspaces
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Graded Rotation for Three Concept Subspaces
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Example of Rectification in ISR



Introduction Background Our Proposed Method Results Conclusion Future Work

Example of Rectification in ISR
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Example of Uncentering in ISR
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Uncentering in ISR
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Iteration in ISR

We observe that the learned subspaces from OSCaR are not
completely orthogonal
As such, we iteratively run the entire centering, rectification,
and uncentering process leading to our approach
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Word Embedding Association Test (WEAT)

X = {man,male, ...} (definitionally male words
Y = {woman, female, ...} (definitionally female words)
A = {programmer , engineer , scientist, ...} (stereotypical male
professions)
B = {nurse, teacher , librarian, ...} (stereotypical female
professions)

s (w ,A,B) =
1
|A| ∑

a∈A
cos (a,w)− 1

|B| ∑
b∈B

cos (b,w)

s (X ,Y ,A,B) =
1
|X | ∑

x∈X
s (x ,A,B)− 1

|Y | ∑
y∈Y

s (y ,A,B)
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Evaluation using WEAT
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Self-WEAT (SWEAT) score

X = {man,male, ...} (definitionally male words
Y = {woman, female, ...} (definitionally female words)
Randomly split X into X1 and X2

Similarly split Y into Y1 and Y2

Compute the WEAT score:

s(X1,Y1,X2,Y2)
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Evaluation of Information Preserved
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Evaluation using SEAT
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3-concept Debiasing
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Conclusion

We introduced a new mechanism for augmenting vectorized
embedding representations, namely Iterative Subspace
Rectification (ISR)
Our approach:

⋆ Offers improved bias removal while retaining the key concept
information

⋆ Can be extended to multiple concept subspaces
⋆ Explicitly encodes concepts along the coordinate axis, making

the resulting representations Interpretable
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Code

https://github.com/poaboagye/ISR

https://github.com/poaboagye/ISR
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Out-of-Distribution Detection

Image Credit: https://openreview.net/pdf?id=aEFaE0W5pAd
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Convergence of Language and Vision Model Geometries

Image Credit: https://arxiv.org/pdf/2302.06555.pdf
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