Introduction	Background	Our Proposed Method	Results	Conclusion	Future Work
000000000	000000000		000000	00	0000

Interpretable Debiasing of Vectorized Language Representations with Iterative Orthogonalization

Prince Osei Aboagye

Staff Research Scientist Visa Research

August 9, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Background	Our Proposed Method	Results	Conclusion	Future Work
•00000000	00000000		000000	00	0000

High-dimensional Vectorized Embeddings

- Core element of the vast majority of machine learning tasks.
- Facilites learning, understanding concepts, and efficiently representing feature spaces.

• Mapped vector representations of data entities in high-dimension.

Introduction 00000000	Background 000000000	Our Proposed Method	Results 000000	Conclusion 00	Future Work
Embeddir	ng Mechan	ism			

• Self-supervised learning approach

a

• Effectively convey the meaning and structural relationships present in the input data.

Introduction 00000000	Background 000000000	Our Proposed Method	Results 000000	Conclusion 00	Future Work

Challenges in High-dimension

- Difficult to think about or conceptualize the structure of embeddings in high-dimension.
- This makes analyzing and obtaining meaningful patterns within the embeddings difficult.

Introduction	Background	Our Proposed Method	Results	Conclusion	Future Work
000000000	000000000		000000	00	0000

Inherent Challenges Associated with Embeddings

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Way Forward: Geometric Approaches

- Despite these challenges, there are existing geometric techniques that can be used to gain insights and extract meaningful information from high-dimensional embeddings:
 - \star Defining a basis
 - * Spectral structure through Eigen-Decomposition
 - ⋆ Normalization
- These techniques permit us to consider the geometry of these vectorized high-dimensional embeddings more appropriately.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 000000000	Background 000000000	Our Proposed Method	Results 000000	Conclusion 00	Future Work

Way Forward: Geometric Approaches

• Consequently, understanding the underlying geometrical structure of the high-dimensional vectorized embedding is of great interest.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• This motivates the central theme of my dissertation.

Introduction 0000000€0	Background 000000000	Our Proposed Method	Results 000000	Conclusion 00	Future Work

Central Theme

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Introduction 00000000●	Background 000000000	Our Proposed Method	Results 000000	Conclusion 00	Future Work

Central Theme: Publications

- [ICLR, 2022] P. O. Aboagye, J. Phillips, Y. Zheng, J. Wang, C.-C. M. Yeh, W. Zhang, L. Wang, and H. Yang, Normalization of language embeddings for cross-lingual alignment, in International Conference on Learning Representations, 2022.
- [AMTA, 2022] P. O. Aboagye, Y. Zheng, M. Yeh, J. Wang, Z. Zhuang, H. Chen, L. Wang, W. Zhang, and J. Phillips, *Quantized Wasserstein Procrustes alignment of word embedding spaces*, in Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas, 2022.
- [ICLR, 2023] P. O. Aboagye, Y. Zheng, J. Shunn, C.-C. M. Yeh, J. Wang, Z. Zhuang, H. Chen, L. Wang, W. Zhang, and J. M. Phillips, *Interpretable debiasing of vectorized language representations with iterative orthogonalization*, in International Conference on Learning Representations (ICLR), 2023.
- [Under Review] P. O. Aboagye, H. Pourmahmoodaghababa, Y. Zheng, C.-C. M. Yeh, J. Wang, H. Chen, L. W. Xin Dai, W. Zhang, and J. Phillips, One-hot encoding strikes back: Fully orthogonal coordinate-aligned class representations.

Introduction 000000000	Background ●00000000	Our Proposed Method	Results 000000	Conclusion 00	Future Work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction 000000000	Background 0●0000000	Our Proposed Method	Results 000000	Conclusion 00	Future Work

AI Safety

Is it real or made by AI? Europe wants a label for that as it fights disinformation

The European Union is pushing online platforms like Google and Meta to step up efforts to fight false information by adding labels to text, photos and other content generated by artificial intelligence

WORLD+BIZ

Xinhua/UNB 17 May, 2023, 02:20 pm Last modified: 17 May, 2023, 02:27 pm

WHO calls for safe, ethical use of AI tools for health

Introduction 000000000	Background 00●000000	Our Proposed Method	Results 000000	Conclusion 00	Future Work

Word Embeddings

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Introduction 000000000	Background 000●00000	Our Proposed Method	Results 000000	Conclusion 00	Future Work

Bias in Language Representation

Our Proposed Method

Results

Conclusion

Future Work

Bias Amplification in ChatGPT

Source: https://textio.com/blog/chatgpt-writes-job-posts/99089591200

02-03-23 | WORKPLACE EVOLUTION

We asked ChatGPT to write performance reviews and they are wildly sexist (and racist)

Textio's cofounder Kieran Snyder observes that it takes so little for ChatGPT to start baking gendered assumptions into otherwise highly generic feedback.

"Name 10 philosophers"

1/6

2:01 PM · Mar 3, 2023 · 2.4M Views

3,638 Retweets 860 Quotes 15K Likes 2,016 Bookmarks

Source: https://www.fastcompany.com/90844066/chatgpt-write-performance-reviews-sexist-and-racist

Source: https://mobile.twitter.com/dk_munro/status/1631761802500423680

Introduction 000000000	Background 00000€000	Our Proposed Method	Results 000000	Conclusion 00	Future Work

Debiasing Representations by Post Processing

• Concept Subspaces Identification

• Debiasing and Disentangling of Subspaces

Introduction	Background	Our Proposed Method	Results	Conclusion	Future Work
000000000	000000€00		000000	00	0000

Concept Subspaces Identification: Two Means

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● のへの

Introduction 000000000	Background 0000000€0	Our Proposed Method	Results 000000	Conclusion 00	Future Work

Debiasing and Disentanglement of Subspaces

- Linear Projection, LP (Dev & Phillips, 2019)
- Hard Debiasing, HD (Bolukbasi et al., 2016)
- Iterative Null Space Projection, INLP (Ravfogel et al., 2020)

• OSCaR (Dev et al., 2021)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々⊙

Introduction	Background	Our Proposed Method	Results	Conclusion	Future Work
000000000	000000000	•0000000000000	000000	00	
Our Prop	osed Meth	od			

- In this work, we propose a new mechanism to augment a word vector embedding representation that offers:
 - ★ improved bias removal while retaining the concept information
 ★ resulting in the interpretability of the representation.

• We build on top of Orthogonal Subspace Correction and Rectification (OSCaR)

Our Proposed Method

Results 000000 onclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Work

Significant modifications to OSCaR

- Centering
- Rectification
- Uncentering
- Iteration
- We call our approach Iterative Subspace Rectification (ISR)

• • • •	∄►∢	≣ ▶ →	ヨトー	Ξ.	500
---------	-----	-------	-----	----	-----

scientist

engineer

▲lawyer ▲banker

A lawyor

•him •she se koman his •man control Gender→

Our Proposed Method

n she ber froman

maid

Point of Rotation in OSCaR

ehe e

000000

Conclu 00 Fu

clusion

Future Wo

Introduction 000000000	Background 000000000	Our Proposed Method	Results 000000	Conclusion 00	Future Work
Centerin	g in ISR				

□	► 4 AP	• • =	• • = 1	. B	Sac
	LP			-	

▲ scientist

maid

▲ lawyer

nurse

Example of Centering in ISR

Our Proposed Method

homemaker

grandma

hers

Introduction 000000000 Background 000000000 Our Proposed Method

Results

onclusion O

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Future Work

Example of Centering in ISR

Introduction 000000000	Background 000000000	Our Proposed Method	Results 000000	Conclusion	Future Work

Rectification/Orthogonalization in ISR

Image Credit: Dev, et al., 2021, "OSCaR: Orthogonal Subspace Correction and Rectification of Biases in Word Embeddings" $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi = \langle \Xi \rangle + \langle \Xi \rangle + \langle \Xi = \langle \Xi \rangle + \langle \Xi = \langle \Xi =$

Introduction 000000000 Our Proposed Method

Results 000000 onclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Future Work

Graded Rotation for Two Concept Subspaces

Our Proposed Method

Results

onclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Future Work

Graded Rotation for Three Concept Subspaces

ntroduction Backgr

ackground 00000000 Our Proposed Method

Results 000000 Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Future Work

Example of Rectification in ISR

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

o man

lawyer ▲ banker programmer

engineer

scientist

Example of Rectification in ISR

Our Proposed Method

Future Work

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Our Proposed Method

Example of Uncentering in ISR

000000

onclusion

Future Work

luction	Background	Our Proposed Method	Results	Conclusion	Future W
	000000000	000000000000000000000000000000000000	000000	00	0000

Uncentering in ISR

▲ scientist

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- We observe that the learned subspaces from OSCaR are not completely orthogonal
- As such, we iteratively run the entire centering, rectification, and uncentering process leading to our approach

Table 1: Dot Product Scores (dotP) on Gender Terms vs Pleasant/Unpleasant per iteration.

	Before	lter 1	Iter 2	Iter 3	Iter 4	lter 5	Iter 6	lter 7	Iter 8	Iter 9	Iter 10
dotP ISR	0.029	0.007	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
dotP iOSCaR	0.029	0.128	0.204	0.340	0.532	0.716	0.535	0.731	0.473	0.686	0.667

Note: iOSCaR denotes iteratively running OSCaR

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 000000000	Background 00000000	Our Proposed Method	Results ●00000	Conclusion 00	Future Work

Word Embedding Association Test (WEAT)

- *X* = {*man*, *male*, ...} (definitionally male words
- Y = {woman, female, ...} (definitionally female words)
- *A* = {*programmer*, *engineer*, *scientist*, ...} (stereotypical male professions)
- *B* = {*nurse*, *teacher*, *librarian*, ...} (stereotypical female professions)

$$s(w, A, B) = \frac{1}{|A|} \sum_{a \in A} \cos(a, w) - \frac{1}{|B|} \sum_{b \in B} \cos(b, w)$$

$$s(X, Y, A, B) = \frac{1}{|X|} \sum_{x \in X} s(x, A, B) - \frac{1}{|Y|} \sum_{y \in Y} s(y, A, B)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Our Proposed Method

Results 0●0000 onclusion O

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Future Work

Evaluation using WEAT

Table 2:	WEAT	Score	on	Pairs	of	Concepts.
----------	------	-------	----	-------	----	-----------

Concept1	Concept2	Orig.	LP	HD	INLP	OSCaR	SR	iOSCaR	ISR
Gen(M/F)	Career/Family	0.7507	0.7713	0.2271	0.3503	0.3343	0.3235	0.2154	0.0114
Gen(M/F)	Math/Art	0.7302	0.6975	0.1127	0.1262	0.5437	0.2928	0.4435	0.0148
Gen(M/F)	Sci/Art	1.1557	0.9068	0.1381	0.3776	0.8642	0.4245	0.5139	0.0140
Name(M/F)	Career/Family	1.7303	0.0421	0.0992	0.7916	0.8950	0.6556	0.3143	0.0186
Name(E/A)	Please/Un	1.3206	0.0800	0.0518	0.0960	0.3043	0.7015	0.0527	0.1678
Flower/Insect	Please/Un	1.3627	0.2395	0.1363	0.2713	0.6348	0.3957	0.1338	0.0254
Music/Weap	Please/Un	1.4531	0.0373	0.0942	0.0925	1.0135	0.4728	0.2043	0.0770

Introduction 000000000	Background 00000000	Our Proposed Method	Results 00●000	Conclusion 00	Future Work

Self-WEAT (SWEAT) score

- X = {man, male, ...} (definitionally male words
- Y = {woman, female, ...} (definitionally female words)
- Randomly split X into X₁ and X₂
- Similarly split Y into Y_1 and Y_2
- Compute the WEAT score:

 $s(X_1, Y_1, X_2, Y_2)$

A D N A 目 N A E N A E N A B N A C N

Introduction	Background	Our Proposed Method	Results	Conclusion	Future Work
000000000	000000000		000€00	00	0000

Evaluation of Information Preserved

Table 3: SWEAT Score: Measuring Information Preserved.

Concept1	Concept2	Orig.	LP	HD	INLP	OSCaR	SR	iOSCaR	ISR
Gen(M/F)	Please/Un	1.7674	1.2685	1.1957	0.5528	1.5865	1.7678	0.6424	1.7683
Name(M/F)	Please/Un	1.9041	1.0893	1.9115	0.9475	1.8549	1.9046	1.2711	1.9044
Please/Un	Gen(M/F)	1.8762	0.0326	1.8862	0.7090	1.7810	1.8759	0.8006	1.8740
Career/Family	Gen(M/F)	1.8763	0.3530	1.8816	0.4549	1.7720	1.8733	0.7399	1.8527
Achieve/Anx	Gen(M/F)	1.8677	0.5435	1.8691	0.6893	1.7157	1.8694	0.3939	1.8705

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results 0000●0 onclusion

Future Work

Evaluation using SEAT

Table 4: SEAT test result (effect size) of gender debiased BERT and RoBERTa models. An effect size closer to 0 indicates less (biased) association.

Model	SEAT-6	SEAT-6b	SEAT-7	SEAT-7b	SEAT-8	SEAT-8b	Avg (\downarrow)
BERT	0.931	0.090	-0.124	0.937	0.783	0.858	0.620
+ CDA	0.846	0.186	-0.278	1.342	0.831	0.849	0.722
+ DROPOUT	1.136	0.317	0.138	1.179	0.879	0.939	0.765
+ INLP	0.317	-0.354	-0.258	0.105	0.187	-0.004	0.204
+ SentenceDebias	0.350	-0.298	-0.626	0.458	0.413	0.462	0.434
+ iOSCaR (Our approach)	0.931	0.078	-1.447	-1.178	-1.21	-1.491	1.056
+ ISR (Our approach)	0.048	-0.264	-0.253	-0.035	0.243	0.295	0.190
RoBERTa	0.922	0.208	0.979	1.460	0.810	1.261	0.940
+ CDA	0.976	0.013	0.848	1.288	0.994	1.160	0.880
+ DROPOUT	1.134	0.209	1.161	1.482	1.136	1.321	1.074
+ INLP	0.812	0.059	0.604	1.407	0.812	1.246	0.823
+ SentenceDebias	0.755	0.068	0.869	1.372	0.774	1.239	0.846
+ iOSCaR (Our approach)	0.894	0.268	0.574	0.648	0.504	0.729	0.603
+ ISR (Our approach)	0.554	0.099	0.296	0.546	0.394	0.419	0.385

Introduction	Background	Our Proposed Method	Results	Conclusion	Future Work
000000000	000000000		00000●	00	0000

3-concept Debiasing

Table 5: WEAT, dot product, and SWEAT scores for 3-concept debiasing among GT, NN, and P/U.

	WEAT				SWEAT				
Iteration	GT vs NN	GT vs P/U	NN vs P/U	GT vs NN	$GT \; vs \; P/U$	NN vs P/U	GT	NN	P/U
Orig.	0.1797	0.3337	1.1506	0.0589	0.0729	0.1721	1.7674	1.7289	1.8762
lter 1	0.1157	0.1290	0.6195	0.0395	0.0273	0.0598	1.7692	1.7298	1.8768
Iter 2	0.0657	0.0442	0.3146	0.0252	0.0104	0.0204	1.7502	1.7459	1.8648
Iter 3	0.0316	0.0113	0.1974	0.0157	0.0041	0.0070	1.7637	1.7592	1.8715
Iter 4	0.0097	0.0015	0.1564	0.0096	0.0017	0.0024	1.7745	1.7711	1.8761
lter 5	0.0040	0.0067	0.1423	0.0058	0.0007	8000.0	1.7545	1.7386	1.8603

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Introduction 000000000	Background 000000000	Our Proposed Method	Results 000000	Conclusion ●○	Future Work
Conclusi	on				

- We introduced a new mechanism for augmenting vectorized embedding representations, namely Iterative Subspace Rectification (ISR)
- Our approach:
 - $\star\,$ Offers improved bias removal while retaining the key concept information
 - \star Can be extended to multiple concept subspaces
 - Explicitly encodes concepts along the coordinate axis, making the resulting representations Interpretable

	Introduction 000000000	Background 000000000	Our Proposed Method	Results 000000	Conclusion ⊙●	Future Work
Code	Code					

https://github.com/poaboagye/ISR

Introduction Background Our Proposed Method Results Conclusion O

Out-of-Distribution Detection

 ${\sf Image\ Credit:\ https://openreview.net/pdf?id{=}aEFaE0W5pAd}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□ → ◆圖 → ◆国 → ◆国 → □ ■

Convergence of Language and Vision Model Geometries

Introduction 000000000 Background 000000000 Our Proposed Method

Results

nclusion

Future Work

Acknowledgement

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Introduction	Background	Our Proposed Method	Results	Conclusion	Future Work
000000000	000000000		000000	00	000●

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ